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Abstract-Two thermal microscales for buoyancy driven turbulent flows are proposed. The first of these 
scales, arranged relative to viscous dissipation, is 

qs _ (I+;!(YJ 

which explicitly includes the limit for o --t co, and, arranged relative to inertial production, is 

which explicitly includes the limit for (r + 0. Here u = v/a denotes the Prandtl number? and pfl the 
production of buoyant turbulent energy. The limits of this scale for o - 1, and e + 0, co are shown to be 
the celebrated Kolmogorov scale and its extensions known as the Oboukhov-Corrsin and Batchelor scales, 
respectively. The qs scale is independent of any integral (or geometric) effect. 

The second of these scales in terms of the limit for u -+ co is 

and in terms of the limit for e -+ 0 is 

a3 l/6 

I,, - 1”‘(1 +u)“6 q ( > 
where I is an integral (or geometric) scale. When expressed in terms of buoyant force induced by internal 
energy generation, these scales relative to the integral scale become 

‘Is/l - II; “4 &/I - II;“” 

where 

Ra, n, - ~ 
1+pr-’ 

is the appropriate Rayleigh number and Pr is the Prandtl number. Here @ = u”‘/pc,, u”’ being the rate of 
energy generation per unit volume. 

A two-la:yer heat transfer model for turbulent flow driven by internal energy generated between two 
horizontal plates is proposed. The model yields, in terms of the foregoing scales, 

or, in terms of II, 

tFor notational c~onvenience, the Prandtl number is denoted by u in scale developments. For customary reasons, it is 
denoted by Pr among the dimensionless numbers for heat transfer. 
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NOMENCLATURE 

a thermal diffusivity 

CP specific heat at constant pressure 
Co, C,, C, constants 

& buoyancy force 
FI inertial force 

Fv viscous force 

9 gravitational acceleration 

91 gravitational acceleration vector 
Gr Grashof number 
k thermal conductivity 
K mean kinetic energy 
Ko rms of temperature fluctuations 
I a characteristic length for geometry 
NM Nusselt number, Ql’/aAT 
P+ Peclet number for buoyancy driven 

flows 
Pr Prandtl number 

4 heat flux 

4c core heat flux 

;: 

enthalpy flow 
conduction heat flux 

Ra Rayleigh number 
Ra, critical Rayleigh number 

sij fluctuating rate of strain 

&j mean rate of strain 
T temperature 
U root mean square of velocity 

fluctuation 

U, core velocity 
ui velocity fluctuation 
U 

11, rate of energy generation/volume 

u, mean velocity 
V a characteristic velocity. 

Greek symbols 

B coefficient of thermal expansion 

6” momentum boundary layer thickness 

6, thermal boundary layer thickness 
A difference 
& viscous dissipation 

so thermal dissipation 

r Kolmogorov scale 

fl0 thermal microscale 

Vi Batchelor scale 

& Oboukhov-Corrsin scale 
I9 temperature fluctuation 

0, core temperature 
0 mean temperature 

@II temperature of isothermal ambient 
I Taylor scale 

10 thermal microscale 

p dynamic viscosity 
V kinematic viscosity 
n N.1 dimensionless number for buoyancy 

driven flows 

P density 
Prandtl number 

; energy generation (dimensionless). 

Script symbols 

9, mean transport 
(90)j thermal transport 
9 inertial production 

8, buoyant production 

90 thermal production. 

Superscripts 
instantaneous value 
mean value. 

where NM denotes the Nusselt number. The special case of this relation for Pr > 1 is already known to 
correlate the experimental literature on electrolytically heated water. 

1. INTRODUCTION 

Buoyant turbulent flow driven by internal energy gen- 
eration has been lately receiving increased attention 
because of its relevance to post-accident heat removal 
from nuclear systems. While the turbulent motion 
associated with the classical Benard problem has been 
extensively studied (see Arpaci [l] for a latest list of 
references), the literature on the buoyant flow driven 
by energy generation is confined only to fewer studies 
(see, for example, Cheung [2] for a list of references). 

Furthermore, the microscale foundations of heat and 
mass transfer in buoyancy driven flows have appar- 
ently escaped any attention except for the recent stud- 
ies by Arpaci [ 1, 31 and Arpaci and Selamet [4]. 

The present study as well as the past modeling 
efforts by Cheung [.5] and Cheung et al. [6] are all 
motivated by the experimental work of Kulacki and 
co-workers [7, 81. Generalizing the existing models, 
the present study demonstrates how two Cheung cor- 
relations for the limits of Pr << 1 and Pr >> 1 can be 
combined into one for any Prandtl number. The study 
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involves five sections and one appendix : following 
this introduction, Section 2 introduces a fundamental 
dimensionless number for buoyancy driven flows, Sec- 
tion 3 develops the microscales appropriate for buoy- 
ant turbulent flows driven by internal energy gener- 
ation, Section 4 constructs a heat transfer model in 
terms of these scales and Section 5 concludes the 
study. In the appendix, a microscale interpretation of 
the existing literature is given. 

2. A DIMENSIONLESS NUMBER 

As is well-known, the independent dimensionless 
numbers characterizing buoyancy driven flows are the 
Rayleigh and Prandtl numbers, Ra and Pr, respec- 
tively. A dimensionless number recently proposed by 
Arpaci [3] explicitly describes these flows by a com- 
bination of Ra and Pr. A review of this dimensionless 
number is needed for the microscales of buoyancy 
driven flows. 

Let the buoyancy driven momentum balance be 

Fa - F,+Fv (1) 

where FB, F, and fiv denoting respectively the buoyant, 
inertial and viscous forces. Also, let the thermal energy 
balance be 

QH - Qk (2) 

where Qr, and Qk denoting respectively the enthalpy 
flow and conduction. Then, from equation (1) 

FLI FalFv 
F,+Fv FIIFv + 1 

and from equation (2) 

QHIQK (4) 

the numeral 1 in equation (3) implying order of mag- 
nitude. Although the force ratios of equation (3) and 
the energy ratio Iof equation (4) are dimensionless, 
they are usually enpressed in terms of velocity which 
is a dependent variable in buoyancy driven Ilows : 

where 1 is a characteristic length, and the rest of the 
notation is conventional. Now, the combination of 
equations (3) and (4) for a result independent of vel- 
ocity yields 

rIN ‘W 
WFV)(QHIQK) 

WFV)(QKIQH) + 1 

or 

Ra PrRa 
I-IN--=- 

l+Pr-’ l+Pr 

(6) 

which is the appropriate dimensionless number for 
natural convection in any fluid. Here, 

o=pr=! Ra&!. $3 
a c > va P 

respectively denote the Prandtl and Rayleigh 
numbers. The two limits of equation (7) are 

Am0 IIN + PrRa = Pe, 

PeN being a Peclet number for buoyancy driven flows, 
and 

lim IIN + Ra P, + m 

(see, for example, pp. 116-l 19 of Bejan [9]). 
For a specified temperature difference, the defi- 

nition of the coefficient of isobaric expansion, 

P=;(g) 
P 

gives 

and IIN now depends on the usual form of 

Ra = gBAT1’ 
vu ’ 

Although the existence of IIN has never been 
directly shown, the integral solution for the laminar 
natural convection near a vertical plate given by 
Squire [lo] almost half a century ago leads for heat 
transfer to 

Nu = 0.508Pr”2(Pr+20/21)-‘/4Gr”4 

where Gr is the usual Grashof number. Recalling 
Ra = GrPr, this result can be rearranged in terms of 
II% 

Nu = 0.508II;” 

where Nu is the Nusselt number, and 

rIN = 
Ra 

0.952+ PC’ ’ 

(Also, see p. 133 of Bejan [9]). Since then the explicit 
role of IIN in studies on buoyancy driven flows is 
usually ignored. For example, an experimental study 
by Krishnamurti [ 1 l] shows the cascade of transitions 
in buoyancy driven flows past the Benard instability. 
Any two successive transitions, illustrated here in 
terms of the first two, can be qualitatively related by 
a simple model depending on IIN, 

(Ra,hI = (Ra,),+ s 
or 

where 

(R& = @Jr + (AIM? 
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Pr 

Fig. 1. A sketch of first two transitions in terms of lTN. 

(A&,):’ = $ 

and 

(A&z,): = (R&i - (Ra,), Pr + co. 

For liquid metals, Pr cc 1 and equation (9) is reduced 
to 

(AI&,):’ --f (ARn,):‘Pr 

which is the tangent of equation (9) between domains 
I and II shown in Fig. 1. As Pr -+ 0, all transitions 
collapse on the first transition which now directly 
leads to turbulence (Domain I in Fig. 1). For gases, 
Pr N 1 and equation (9) now covers a narrow band in 
the middle of Domain II (g-band). For water, 
6 < Pr < 30, equation (9) continues to apply but 
covers a wider range than that of gases (w-band). 
For viscous oils, lo2 < Pr < co, and equation (9) is 
reduced to 

(AI-I,):’ + (A&J;’ 

which is independent of Pr because of the negligible 
inertial effect (Domain III in Fig. 1). The analytical 
literature, as well, overlooks the significance of IIN. 
Beginning with Malkus and Veronis [12] for free 
boundaries, and continuing with Schluter, Lortz and 
Busse [ 131, Gough, Spiegel and Toomre [ 141 and Busse 
[15] for rigid boundaries, a first order inertial effect is 
incorporated into heat transfer by an expansion in 
powers of Pr-’ 

Nu-1 
~ = (Cl +C2Pr-’ +C3Prm2 +. .) Ru - Ru, 

which can be rearranged, in view of 

1-Pr-‘+Pr-2-Pr-3+... s (l+Pr-‘)-I 

as 

Ru - Ru, 
Nu-1 -p 

l+Pr-’ 

or, 
Nu-1 -AI&.,. 

For a specified energy generation, the following 
dimensional equivalence, 

rearranged in terms of 

@ = uttt/pcp 

yields 

AT - @p/a 

and IIN, now identified with II,, depends on 

Ru, =$. (10) 

The next section is devoted to the development of 
microscales for buoyancy driven turbulent flows in 
terms of II,. 

3. MICROSCALES 

Following the usual practice, decompose the instan- 
taneous velocity and temperature of a buoyancy 
driven turbulent flow into a temporal mean (denoted 
by capital letters) and fluctuations 

t7, = lJ,+yand&= Of0 

and let U, and 0 be statistically steady. Then, the 
balance of the mean kinetic energy of velocity fluc- 
tuations 

K=;u,ui 

yields (see, for example, Tennekes and Lumley [ 161) 
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where 

CB, = &+fu,u,uj-2VUiSIj 

is the transport, 

8, = -gjujejo, (12) 

is the buoyant production, g, being vector acceleration 
of gravity and 0, a characteristic temperature for 
isobaric ambient 

9 = --uiuj& (13) 

is the inertial production, and 

&=2VS,jS,j (14) 

is the viscous dissi:pation of turbulent energy. 
Also, the balance of the root mean square of tem- 

perature fluctuations 

gives 

where 

is the thermal transport 

ga =-a!2 e J ax, 
is the thermal production and 

ae ae 
El? =uaxjaxj 

(16) 

(17) 

is the thermal dissipation. 
For a homogeneous pure shear flow (in which all 

averaged quantities except Vi and 0 are independent 
of position and in which Sij and do/ax, are constant), 
equations (11) and (15) reduces to 

and 

9, = g+(-E) (18) 

9’~ = E.g. (19) 

Equation (18) states that the buoyant production is 
partly converted into inertial production and partly 
into viscous dissipa.tion. 

On dimensional grounds, assuming S, - u/l and 
a@/ax, - e/l, equations (18) and (19) may be written 
as 

tThe first numeral 1 in the right-hand side of equations 
(23), (24), (26) and (:!7) is related to the numeral 1 of equa- 
tions (3) and (7) and implies order of magnitude. 

pfl 
22 u2 

-if5 
and 

82 82 
u--a- 

l Ai 
(21) 

where u and 0 respectively denote the rms values of 
velocity and temperature fluctuations, I is an integral 
scale, 1 and Is are Taylor scales [17]. Equations (20) 
and (21) imply isotropic mechanical and thermal dis- 
sipations. Note that the isotropic dissipation is usually 
a good approximation for any turbulent flow (see for 
example, Tennekes and Lumley [ 161). 

3.1. Thermal scales 
To proceed further, invoke the Squire postulate and 

let 

1 - Ie (22) 

in equation (20). This is an often misinterpreted piv- 
otal assumption. It postulates the secondary import- 
ance of I # Ie for heat transfer rather than suggesting 
equal thickness for scales. The difference in these 
scales will be illustrated in the subsection on kinetic 
scales. Now, elimination of velocity between equa- 
tions (20) and (21) results in a thermal Taylor scale 
arranged relative to viscous dissipation 

or, rearranged relative to inertial production, 

a3 l/6 

Is - V(l +a)“6 ps ( > (24) 

where equation (23) explicitly includes the limit for 
0 --+ co and is convenient for fluids with CT > 1, and 
equation (24) explicitly includes the limit for 0 + 0 
and is convenient for fluids with 0 < 1. 

For the isotropic flow, replacing both 1 and 1, with 
one scale, say 90, 

Ae 0 1 -+ ?e 

equations (23) and (24) are respectively reduced to a 
thermal Kolmogorov scale for buoyancy driven 
flows? 

and 

a3 l/4 

?e-(l+~)“4 q . ( > 
For G >> 1, equation (26) is reduced to 

(26) 

(27) 
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Also, 

and, in view of equation (1 S), 

(28) 
opment, however, the relations between these scales 
and the dimensionless number TI, need to be shown. 

Note that 8, usually depends on velocity, and equa- 
tion (26) or (27) expressed in terms of velocity cannot 

(29) be ultimate forms of the Kolmogorov scale for buoy- 
ancy driven flows. To eliminate any velocity depen- 
dence, reconsider equation (12). On dimensional 
grounds, 

90 ‘v & (30) - 

and equation (28) becomes the scale introduced by 
Batchelor [18] : Noting 

9, - guB/Oo. (40) 

(31) 
0,’ -p 

/3 being the coefficient of thermal expansion, rearrange 

For 0 << 1, equation (26) is reduced to equation (40) as 

go - due (41) 
(32) or, with the isotropic velocity 

Also 

lims+O r-0 (33) 

and, in view of equation (1 S), 

Y,+P. (34) 

Then, in a viscous layer order of magnitude thinner 
than rls, 

B * E. (35) 

Now, the inner limit of equation (34) matched to the 
outer limit of equation (35) leads to equation (30), 
and equation (32) becomes the scale proposed by 
Oboukhov [19] and Corrsin [20], 

u - ah (42) 

obtained from equations (21) and (25), as 

8, - MWrl0. (43) 

Now, assume (3 across qs of volume (~1’) be a result 
of the rate of internal energy u”’ generated per unit of 
P-volume, 

which gives 

e- (3 !!!Q 
a (45) 

(36) where @ = u”‘/pc,. Elimination of f3 between equations 
(43) and (45) yields 

Finally, for 0 - 1, because of (an order of magnitude) 
equipartition of the buoyant production into inertial 
production and viscous dissipation, equation (18) Then, equations (26) and (27) respectively lead to 

(37) 

and equations (26) and (27) are reduced to the scale 
originated by Kolmogorov [21] : and 

(38) 

‘l@ - (l+;)li4($J4 (47) 

(48) 

The relation between the thermal microscales and Ora 
the integral scale may now be obtained by eliminating 
the factor (1 + l/a) (va’/9& between equations (23) (49) 
and (26). This readily yields 

(-1 

rls ‘-3 
where 

is I’ (39) Pai PrRa, I&-=-- 
l_tPr-’ l+Pr’ (50) 

Equations (24) and (27) lead to the same relation, as 
expected. The foregoing scales are utilized in the next Two limits of equation (SO) are 
section on the development of a heat transfer cor- 
relation for buoyancy driven flows. Before this devel- lim IT, + PrRal h-10 (51) 
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lim II, -+ Ra, Pr-m 

where 

Ra 
I (10) 

is the Rayleigh number based on @. Also, from equa- 
tions (39) and (49), 

The following subsection is devoted to the kinetic 
microscales of buoyancy driven flows. 

3.2. Kinetic scales 
Except for gases, the kinetic scales are markedly 

different than the foregoing thermal scales. For u >> 1 
(viscous oils) the kinetic scale is order of magnitude 
larger than the thermal scale. That is, the flow extends 
far beyond the in:Ruence of buoyancy ; it is basically 
isothermal and, in the limit of isotropic flow, is gov- 
erned by the usual Kolmogorov scale. Also, in this 
case, the inertial production is negligible, equation 
(18) is reduced to equation (30), and 

v3 l/4 

q-- ( > 8, 

For e << 1 (liquid metals), the kinetic scale is order 
of magnitude smaller than the thermal scale. The 
buoyant production within rl is negligible, and equa- 
tion (18) is reduce’d to equation (35). Also, the viscous 
dissipation within Q-V is negligible, and equation 
(18) is reduced to equation (34). Then, the outer limit 
of equation (35) matched to the inner limit of equation 
(34) leads to equation (30), and equation (53) con- 
tinues to describe: the isotropic kinetic scale over a 
domain between rl and vs. Now, the ratio between 
equation (53) and (26) or (27) gives 

rl g314 

-Np 

yls (1 +a)“4 

which, for Q -+ 0, is reduced to 

? lim - - g3j4 0 O-O le 

and, for Q + co is reduced to 

‘I lim - - 0”‘. 
0 =-m yls 

In the next section a heat transfer model based on 
the foregoing microscales is proposed for buoyancy 
driven turbulent flows driven by internal energy gen- 
eration. 

4. A HIEAT TRANSFER MODEL 

Consider a buoyant flow driven by internal energy 
generated between two horizontal plates. Assume 

large enough energy generation resulting in fully 
developed turbulent conditions. This is an ideal prob- 
lem for a test on the proposed microscales because of 
the availability of some experimental and analytical 
literature. In a manner similar to the Prandtl-Taylor 
two-layer turbulence model for forced convection, let 
the buoyancy driven turbulent flow be described by a 
sublayer next to each plate and a core between these 
layers. Assume each sublayer thickness be char- 
acterized by the Kolmogorov scale, and the diffusion 
(and the intermittent dissipation) in the core by the 
Taylor scale. 

The mean heat flux in the sublayer, in view of the 
assumed isotropy [recall equation (42)], is 

6-k! 
yls 

- pc,ue (57) 

which shows the same order of magnitude con- 
tributions from conduction and convection. The mean 
heat flux in the core is 

qc - k; +pc,u,O, 
0 

(58) 

which, in view of equation (21) or 

1 10 u, 
z,” I a 0 

may be rearranged as 

4c - pep 1+ $ 
( > 

z&B, (60) 

where the subscript c indicates to the core. Then, in 
view of Is/l << 1, equation (60) is reduced to 

9c - PC$&. (61) 

At the interface between the sublayer and core 

4 - 4V (62) 

There is conclusive evidence about a temperature 
reversal in the core of the turbulent Benard problem 
demonstrated experimentally by Thomas and Town- 
send [22], Gille [23], and numerically by Herring [24] 
and Elder [25]. Some of the Kulacki and Emara [7] 
data on electrolytically heated water indicates also to 
a similar trend for the present case. Accordingly, in 
terms of the temperature profile sketched in Fig. 2, 

0-6, -AT (63) 

where AT is the temperature difference between one 
of the plates and the middle plane. Inserting 0 of 
equation (57) and & of equation (61) into equation 
(63), noting equation (62), 

q(l -a/u&) - kA% (64) 

which may be rearranged in terms of the Nusselt num- 
ber depending on @ (note q - Cl- @pc,c) 
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f- 

i 

Core 

t-----e+ 
Fig. 2. A sketch of core temperature reversal. 

au* Nu=kii\yTil)y- 
aAT 

as 

where the numerator shows the contribution of the 
sublayer and the denominator shows that of the core 
on heat transfer. To express equation (66) in terms of 
the length scales alone, reconsider equation (21) for 
velocity of the core, 

1 
u,-a- 

A,2 

which may be rearranged as 

(67) 

In terms of this relation, equation (66) becomes 

(68) 

which, in view of equations (49) and (52) yields a 
model for any Prandtl number 

(70) 

The two limits of this result, 

lim Nu - 
(PrRa,) ‘/4 

Pr - II 1 -(PrRa,)-“‘2 (71) 

lim Nu - 
Ra,““ 

Pr + m 1-Ra;“‘2’ (72) 

are identical to the models already proposed by 
Cheung [5]. Thus, the present study generalizes, via 
microscales appropriate for buoyancy driven flows, 
two Cheung correlations into equation (70) which is 
valid for fluids of any Prandtl number. Now, equation 
(70) may be written as an equality in terms of three 
constants 

Nu = 
c, rI:i4 

1_C*~;l/l2 “I= 
(73) 

and provides a heat transfer correlation for turbulent 
natural convection driven by internal energy gen- 
eration between two parallel plates. Although the 
values of C,,, C, and C2 must be determined from 
experimental data, they are expected to be numerical 
constants. 

The experimental literature on the buoyant tur- 
bulent flow driven by volumetric internal energy gen- 
eration is confined to the studies of Tritton and Zar- 
raga [26], Fiedler and Wille [27], Kulacki and Emara 
[7] and Kulacki and Nagle [8]. These studies employ 
electrolytically heated water for which Pr remains 
within the narrow range of 67. If one assumes Co << 1 
indicating to a small inertial effect (see Arpaci [l]), 

II+Ra,Pr> 1 

and Nu given by equation (73) is reduced to 

Nu = 
C, Rajt4 

l-C,Ra;“‘*’ (74) 

Cheung [5] employs the data of Kulacki and Emara 
and proposes 

(75) 

Figure 3 taken from Cheung shows the correlation of 
the experimental data by equation (75). A correlation 
for any Prandtl number involving the numerical 
values of C, and C, in equation (73) needs data for 
another Prandtl range (preferably for liquid metals) 
which is not presently available. However, for buoy- 
ant turbulent flows between two horizontal plates kept 
at different temperatures, there is extensive data for a 
variety of fluids (including liquid metals, gases, water 
and viscous oils). A recently proposed model by 
Arpaci [l], Arpaci and Dee [28] 

Nu = 
0.0471 IIg3 Ra 

1 - 1.734I-I,“9 I-IN = 1 +O.O414Pr-’ 

correlates these data in terms of IIN over the range of 
106-10”. 

5. CONCLUDING REMARKS 

For buoyant turbulent flows driven by internal 
energy generation, a fundamental dimensionless num- and 
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Fig. 3. In Nu vs In Rai. -, Cheung model given by equation (75) ; 0, data of Kulacki and Emara (1977) 
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APPENDIX 

Consider equation (15) of Cheung [S], 

6, - (sS)- 1/4v3/4(~1)-I,4pr-I,z 

and rearrange it as 

or, as 

which turns out to be the large Prandtl limit of equation (47) 
and is a Batchelor scale. Next, combine equation (25) of 
Cheung, 

s,js, - Prr”* 

with equation (Al), to get 

643) 

which is a Kolmogorov scale. Finally, rearrange equation 
(49) of Cheung, 

6,/l - Pr- ‘I4 Ra; ‘I4 

as 

(A4) 

which is the small Prandtl limit of equation (48) and is an 
Oboukhov-Corrsin scale. Now, the entire Cheung study can 
be interpreted in terms of equations (A2), (A3) and (A4). 


